13 research outputs found

    On the Use of Imaging Spectroscopy from Unmanned Aerial Systems (UAS) to Model Yield and Assess Growth Stages of a Broadacre Crop

    Get PDF
    Snap bean production was valued at $363 million in 2018. Moreover, the increasing need in food production, caused by the exponential increase in population, makes this crop vitally important to study. Traditionally, harvest time determination and yield prediction are performed by collecting limited number of samples. While this approach could work, it is inaccurate, labor-intensive, and based on a small sample size. The ambiguous nature of this approach furthermore leaves the grower with under-ripe and over-mature plants, decreasing the final net profit and the overall quality of the product. A more cost-effective method would be a site-specific approach that would save time and labor for farmers and growers, while providing them with exact detail to when and where to harvest and how much is to be harvested (while forecasting yield). In this study we used hyperspectral (i.e., point-based and image-based), as well as biophysical data, to identify spectral signatures and biophysical attributes that could schedule harvest and forecast yield prior to harvest. Over the past two decades, there have been immense advances in the field of yield and harvest modeling using remote sensing data. Nevertheless, there still exists a wide gap in the literature covering yield and harvest assessment as a function of time using both ground-based and unmanned aerial systems. There is a need for a study focusing on crop-specific yield and harvest assessment using a rapid, affordable system. We hypothesize that a down-sampled multispectral system, tuned with spectral features identified from hyperspectral data, could address the mentioned gaps. Moreover, we hypothesize that the airborne data will contain noise that could negatively impact the performance and the reliability of the utilized models. Thus, We address these knowledge gaps with three objectives as below: 1. Assess yield prediction of snap bean crop using spectral and biophysical data and identify discriminating spectral features via statistical and machine learning approaches. 2. Evaluate snap bean harvest maturity at both the plant growth stage and pod maturity level, by means of spectral and biophysical indicators, and identify the corresponding discriminating spectral features. 3. Assess the feasibility of using a deep learning architecture for reducing noise in the hyperspectral data. In the light of the mentioned objectives, we carried out a greenhouse study in the winter and spring of 2019, where we studied temporal change in spectra and physical attributes of snap-bean crop, from Huntington cultivar, using a handheld spectrometer in the visible- to shortwave-infrared domain (400-2500 nm). Chapter 3 of this dissertation focuses on yield assessment of the greenhouse study. Findings from this best-case scenario yield study showed that the best time to study yield is approximately 20-25 days prior to harvest that would give out the most accurate yield predictions. The proposed approach was able to explain variability as high as R2 = 0.72, with spectral features residing in absorption regions for chlorophyll, protein, lignin, and nitrogen, among others. The captured data from this study contained minimal noise, even in the detector fall-off regions. Moving the focus to harvest maturity assessment, Chapter 4 presents findings from this objective in the greenhouse environment. Our findings showed that four stages of maturity, namely vegetative growth, budding, flowering, and pod formation, are distinguishable with 79% and 78% accuracy, respectively, via the two introduced vegetation indices, as snap-bean growth index (SGI) and normalized difference snap-bean growth index (NDSI), respectively. Moreover, pod-level maturity classification showed that ready-to-harvest and not-ready-to-harvest pods can be separated with 78% accuracy with identified wavelengths residing in green, red edge, and shortwave-infrared regions. Moreover, Chapters 5 and 6 focus on transitioning the learned concepts from the mentioned greenhouse scenario to UAS domain. We transitioned from a handheld spectrometer in the visible to short-wave infrared domain (400-2500 nm) to a UAS-mounted hyperspectral imager in the visible-to-near-infrared region (400-1000 nm). Two years worth of data, at two different geographical locations, were collected in upstate New York and examined for yield modeling and harvest scheduling objectives. For analysis of the collected data, we introduced a feature selection library in Python, named “Jostar”, to identify the most discriminating wavelengths. The findings from the yield modeling UAS study show that pod weight and seed length, as two different yield indicators, can be explained with R2 as high as 0.93 and 0.98, respectively. Identified wavelengths resided in blue, green, red, and red edge regions, and 44-55 days after planting (DAP) showed to be the optimal time for yield assessment. Chapter 6, on the other hand, evaluates maturity assessment, in terms of pod classification, from the UAS perspective. Results from this study showed that the identified features resided in blue, green, red, and red-edge regions, contributing to F1 score as high as 0.91 for differentiating between ready-to-harvest vs. not ready-to-harvest. The identified features from this study is in line with those detected from the UAS yield assessment study. In order to have a parallel comparison of the greenhouse study against the UAS study, we adopted the methodology employed for UAS studies and applied it to the greenhouse studies, in Chapter 7. Since the greenhouse data were captured in the visible-to-shortwave-infrared (400-2500 nm) domain, and the UAS study data were captured in the VNIR (400-1000 nm) domain, we truncated the spectral range of the collected data from the greenhouse study to the VNIR domain. The comparison experiment between the greenhouse study and the UAS studies for yield assessment, at two harvest stages early and late, showed that spectral features in 450-470, 500-520, 650, 700-730 nm regions were repeated on days with highest coefficient of determination. Moreover, 46-48 DAP with high coefficient of determination for yield prediction were repeated in five out of six data sets (two early stages, each three data sets). On the other hand, the harvest maturity comparison between the greenhouse study and the UAS data sets showed that similar identified wavelengths reside in ∼450, ∼530, ∼715, and ∼760 nm regions, with performance metric (F1 score) of 0.78, 0.84, and 0.9 for greenhouse, 2019 UAS, and 2020 UAS data, respectively. However, the incorporated noise in the captured data from the UAS study, along with the high computational cost of the classical mathematical approach employed for denoising hyperspectral data, have inspired us to leverage the computational performance of hyperspectral denoising by assessing the feasibility of transferring the learned concepts to deep learning models. In Chapter 8, we approached hyperspectral denoising in spectral domain (1D fashion) for two types of noise, integrated noise and non-independent and non-identically distributed (non-i.i.d.) noise. We utilized Memory Networks due to their power in image denoising for hyperspectral denoising, introduced a new loss and benchmarked it against several data sets and models. The proposed model, HypeMemNet, ranked first - up to 40% in terms of signal-to-noise ratio (SNR) for resolving integrated noise, and first or second, by a small margin for resolving non-i.i.d. noise. Our findings showed that a proper receptive field and a suitable number of filters are crucial for denoising integrated noise, while parameter size was shown to be of the highest importance for non-i.i.d. noise. Results from the conducted studies provide a comprehensive understanding encompassing yield modeling, harvest scheduling, and hyperspectral denoising. Our findings bode well for transitioning from an expensive hyperspectral imager to a multispectral imager, tuned with the identified bands, as well as employing a rapid deep learning model for hyperspectral denoising

    Targeting the balance of T helper cell responses by curcumin in inflammatory and autoimmune states

    Get PDF
    CD4+ T helper (Th) cells are a crucial player in host defense but under certain conditions can contribute to the pathogenesis of inflammatory and autoimmune diseases. Beside the Th1/Th2 subset, several additional Th subsets have been identified, each with a distinctive transcription factor, functional properties, signature cytokine profile, and possible role in the pathophysiology of diseases. These newer Th subsets include Th17, regulatory Th cells (Tregs), and more recently, Th9, Th22, and follicular T helper cells. Interestingly, imbalance of Th subsets contributes to the immunopathology of several disease states. Therefore, targeting the imbalance of Th subsets and their signature cytokine profiles by a safe, effective and inexpensive nutraceutical agent such as curcumin could be helpful to treat autoimmune and inflammatory diseases. In this study different Th subsets and how the imbalance of these subsets could promote pathology of several diseases has been reviewed. Furthermore, the role of curcumin in this process will be discussed and the impact of targeting Th subsets by curcumin

    Growth Stage Classification and Harvest Scheduling of Snap Bean Using Hyperspectral Sensing: A Greenhouse Study

    No full text
    The agricultural industry suffers from a significant amount of food waste, some of which originates from an inability to apply site-specific management at the farm-level. Snap bean, a broad-acre crop that covers hundreds of thousands of acres across the USA, is not exempt from this need for informed, within-field, and spatially-explicit management approaches. This study aimed to assess the utility of machine learning algorithms for growth stage and pod maturity classification of snap bean (cv. Huntington), as well as detecting and discriminating spectral and biophysical features that lead to accurate classification results. Four major growth stages and six main sieve size pod maturity levels were evaluated for growth stage and pod maturity classification, respectively. A point-based in situ spectroradiometer in the visible-near-infrared and shortwave-infrared domains (VNIR-SWIR; 400–2500 nm) was used and the radiance values were converted to reflectance to normalize for any illumination change between samples. After preprocessing the raw data, we approached pod maturity assessment with multi-class classification and growth stage determination with binary and multi-class classification methods. Results from the growth stage assessment via the binary method exhibited accuracies ranging from 90–98%, with the best mathematical enhancement method being the continuum-removal approach. The growth stage multi-class classification method used raw reflectance data and identified a pair of wavelengths, 493 nm and 640 nm, in two basic transforms (ratio and normalized difference), yielding high accuracies (~79%). Pod maturity assessment detected narrow-band wavelengths in the VIS and SWIR region, separating between not ready-to-harvest and ready-to-harvest scenarios with classification measures at the ~78% level by using continuum-removed spectra. Our work is a best-case scenario, i.e., we consider it a stepping-stone to understanding snap bean harvest maturity assessment via hyperspectral sensing at a scalable level (i.e., airborne systems). Future work involves transferring the concepts to unmanned aerial system (UAS) field experiments and validating whether or not a simple multispectral camera, mounted on a UAS, could incorporate < 10 spectral bands to meet the need of both growth stage and pod maturity classification in snap bean production

    Comparison of UAS-Based Structure-from-Motion and LiDAR for Structural Characterization of Short Broadacre Crops

    No full text
    The use of small unmanned aerial system (UAS)-based structure-from-motion (SfM; photogrammetry) and LiDAR point clouds has been widely discussed in the remote sensing community. Here, we compared multiple aspects of the SfM and the LiDAR point clouds, collected concurrently in five UAS flights experimental fields of a short crop (snap bean), in order to explore how well the SfM approach performs compared with LiDAR for crop phenotyping. The main methods include calculating the cloud-to-mesh distance (C2M) maps between the preprocessed point clouds, as well as computing a multiscale model-to-model cloud comparison (M3C2) distance maps between the derived digital elevation models (DEMs) and crop height models (CHMs). We also evaluated the crop height and the row width from the CHMs and compared them with field measurements for one of the data sets. Both SfM and LiDAR point clouds achieved an average RMSE of ~0.02 m for crop height and an average RMSE of ~0.05 m for row width. The qualitative and quantitative analyses provided proof that the SfM approach is comparable to LiDAR under the same UAS flight settings. However, its altimetric accuracy largely relied on the number and distribution of the ground control points

    Broadacre Crop Yield Estimation Using Imaging Spectroscopy from Unmanned Aerial Systems (UAS): A Field-Based Case Study with Snap Bean

    No full text
    Accurate, precise, and timely estimation of crop yield is key to a grower’s ability to proactively manage crop growth and predict harvest logistics. Such yield predictions typically are based on multi-parametric models and in-situ sampling. Here we investigate the extension of a greenhouse study, to low-altitude unmanned aerial systems (UAS). Our principal objective was to investigate snap bean crop (Phaseolus vulgaris) yield using imaging spectroscopy (hyperspectral imaging) in the visible to near-infrared (VNIR; 400–1000 nm) region via UAS. We aimed to solve the problem of crop yield modelling by identifying spectral features explaining yield and evaluating the best time period for accurate yield prediction, early in time. We introduced a Python library, named Jostar, for spectral feature selection. Embedded in Jostar, we proposed a new ranking method for selected features that reaches an agreement between multiple optimization models. Moreover, we implemented a well-known denoising algorithm for the spectral data used in this study. This study benefited from two years of remotely sensed data, captured at multiple instances over the summers of 2019 and 2020, with 24 plots and 18 plots, respectively. Two harvest stage models, early and late harvest, were assessed at two different locations in upstate New York, USA. Six varieties of snap bean were quantified using two components of yield, pod weight and seed length. We used two different vegetation detection algorithms. the Red-Edge Normalized Difference Vegetation Index (RENDVI) and Spectral Angle Mapper (SAM), to subset the fields into vegetation vs. non-vegetation pixels. Partial least squares regression (PLSR) was used as the regression model. Among nine different optimization models embedded in Jostar, we selected the Genetic Algorithm (GA), Ant Colony Optimization (ACO), Simulated Annealing (SA), and Particle Swarm Optimization (PSO) and their resulting joint ranking. The findings show that pod weight can be explained with a high coefficient of determination (R2 = 0.78–0.93) and low root-mean-square error (RMSE = 940–1369 kg/ha) for two years of data. Seed length yield assessment resulted in higher accuracies (R2 = 0.83–0.98) and lower errors (RMSE = 4.245–6.018 mm). Among optimization models used, ACO and SA outperformed others and the SAM vegetation detection approach showed improved results when compared to the RENDVI approach when dense canopies were being examined. Wavelengths at 450, 500, 520, 650, 700, and 760 nm, were identified in almost all data sets and harvest stage models used. The period between 44–55 days after planting (DAP) the optimal time period for yield assessment. Future work should involve transferring the learned concepts to a multispectral system, for eventual operational use; further attention should also be paid to seed length as a ground truth data collection technique, since this yield indicator is far more rapid and straightforward

    Forecasting Table Beet Root Yield Using Spectral and Textural Features from Hyperspectral UAS Imagery

    No full text
    New York state is among the largest producers of table beets in the United States, which, by extension, has placed a new focus on precision crop management. For example, an operational unmanned aerial system (UAS)-based yield forecasting tool could prove helpful for the efficient management and harvest scheduling of crops for factory feedstock. The objective of this study was to evaluate the feasibility of predicting the weight of table beet roots from spectral and textural features, obtained from hyperspectral images collected via UAS. We identified specific wavelengths with significant predictive ability, e.g., we down-select >200 wavelengths to those spectral indices sensitive to root yield (weight per unit length). Multivariate linear regression was used, and the accuracy and precision were evaluated at different growth stages throughout the season to evaluate temporal plasticity. Models at each growth stage exhibited similar results (albeit with different wavelength indices), with the LOOCV (leave-one-out cross-validation) R2 ranging from 0.85 to 0.90 and RMSE of 10.81–12.93% for the best-performing models in each growth stage. Among visible and NIR spectral regions, the 760–920 nm-wavelength region contained the most wavelength indices highly correlated with table beet root yield. We recommend future studies to further test our proposed wavelength indices on data collected from different geographic locations and seasons to validate our results

    Simvastatin treatment reduces heat shock protein 60, 65, and 70 antibody titers in dyslipidemic patients: A randomized, double-blind, placebo-controlled, cross-over trial

    No full text
    OBJECTIVE This study aimed to evaluate the effects of statin therapy on serum levels of antibodies to several specific heat shock proteins (HSPs) in dyslipidemic patients. DESIGN AND METHODS Participants (n=102) were treated with simvastatin (40mg/day), or placebo in a randomized, double-blind, placebo-controlled, cross-over trial. Anti-HSP60, 65, 70, and hs-CRP levels were measured before and after each treatment period. Seventy-seven subjects completed the study. RESULTS Treatment with simvastatin was associated with significant reductions in serum anti-HSP60, 65, and 70 titers in the dyslipidemic patients (10%, 14%, and 15% decrease, respectively) (p<0.001). There have been previous reports of reductions in serum CRP with statin treatment, and although median CRP levels were 9% lower on simvastatin treatment, this did not achieve statistical significance. CONCLUSION While it is unclear whether HSP antibodies are directly involved in atherogenesis, our findings suggest that simvastatin inhibits autoimmune responses that may contribute to the development of cardiovascular diseas
    corecore